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Executive Summary

A semi-analytical approach to three-dimensional (3-D) shape optimization problems for a viscous
incompressible fluid under the assumption of zero (low) Reynolds number has been developed. It
couples the theory of generalized analytic functions with the adjoint equations-based method. A
solution to Stokes equations governing the behavior of the fluid has been reduced to integral equations
based on the Cauchy integral formula for k-harmonically analytic functions. The fluid velocity and
boundary shape are the state and design variables, respectively, and a shape optimization problem is to
find shape minimizing the energy dissipation rate. In contrast to the classical optimal control theory,
the shape optimization problem has been formulated as an optimal control problem with constraints
in the form of integral equations. The optimality conditions (state, adjoint and design equations)
for the optimal control problem have been derived. The advantage of the suggested approach is
that the state and adjoint variables are single-variable functions, which being represented analytically
in the form of series with unknown coefficients, can be accurately determined from the state and
adjoint integral equations, for example, by minimizing the total squared error. The optimal shape has
been found iteratively by a gradient-based method, in which at each iteration, the state and adjoint
variables have been determined for an updated shape and the gradient for the cost functional with
respect to the shape has been obtained by the adjoint equations-based method. The suggested semi-
analytical approach has been illustrated for the drag minimization problem for motion of a solid body
of revolution in the viscous incompressible fluid and has proved to be efficient and accurate.

The project involved two Ph.D. students Anton Molyboha and Bogdan Grechuk from the Depart-
ment of Mathematical Sciences, Stevens Institute of Technology.

Articles partially supported by the grant and submitted for publication during reporting period:

1. Zabarankin, M. (2008) The framework of k-harmonically analytic functions for three-dimensional
Stokes flow problems, Part I, submitted to SIAM Journal on Applied Mathematics

2. Zabarankin, M. (2008) The framework of k-harmonically analytic functions for three-dimensional
Stokes flow problems, Part II, submitted to SIAM Journal on Applied Mathematics
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1 Introduction

The theory of analytic functions of complex variable is one of the primary methods for analytical
treatment of two-dimensional (2-D) problems in various areas of applied mathematics, including the
theory of electromagnetism, elasticity and hydrodynamics. Coupled with mathematical programming
techniques, it provides an efficient framework for 2-D optimal design problems. This project develops
the approach of generalized analytic functions in application to 3-D shape optimization problems,
in particular for viscous incompressible fluid. We demonstrated the approach in finding the optimal
shape for a solid unit-volume body translating in the fluid with the minimal resistance force (drag).

The behavior of steady flows of a viscous incompressible fluid under the assumption of zero (low)
Reynolds number (so-called Stokes’ creeping flows) is described by the Stokes equations

µ∆u = grad℘, div u = 0, (1)

where u is the fluid velocity field, ℘ is the pressure in the fluid, µ is the shear viscosity, and ∆u ≡
grad(div u) − curl curl u; see [7, 8]. Stokes flows about solid particles have been and continue to be
a popular subject of research in fluid mechanics [7], in particular in analytical hydrodynamics. The
drag and torque of solid bodies in Stokes flows are used for designing chemical technologies that
deal with particle sedimentation; see [7]. Special attention has been paid to the form of a solid
body that minimizes the energy dissipation rate in Stokes flows. If the body translates along some
axis, e.g., the z-axis, with a constant velocity then the principle of minimizing the energy dissipation
rate is equivalent to minimizing the resisting force (drag), experienced by the body. In this regard,
the problem of finding the optimal shape for the solid unit-volume body in the Stokes flow is a
benchmark problem, which was first addressed by Pironneau [12], who established the optimality
condition ‖∂u∂n‖ = const and developed an iterative algorithm for finding the optimal shape. Bourot
[3] used Pironneau’s algorithm to find the optimal shape and obtained the drag of 0.95425 compared
to that of the unit-volume sphere. At each iteration, he represented solution to Stokes equations in
the form of the series of spheroidal harmonics1 and solved the boundary conditions by minimizing the
total squared error with respect to unknown coefficients. However, Pironneau’s optimality condition
is not applicable for incorporating other constraints on the shape and/or motion of the body, e.g.,
for translation of a solid unit-volume body of revolution in the direction orthogonal to its axis of
revolution. Also, implementation of any shape optimization algorithm requires very accurate solution
to Stokes equations. To solve this shape optimization problem, Ogawa and Kawahara [11] used
the finite element method (FEM). However, their result is visibly different from the one obtained
by Bourot. The adjoint equations-based method has proved to be efficient for PDE constrained
optimization problems, in particular for control problems in incompressible viscous flows [6]. It makes
use of adjoint equations to facilitate finding the gradient for objective function with respect to design
variables. For additional details about this shape optimization problem and adjoint equations-based
method, see [17, 16, 4, 10, 11, 9, 3, 15, 6, 13, 5, 1, 14].

The goal of this work was to develop efficient algorithms for 3-D shape optimization applicable
to different models of the viscous incompressible fluid with a variety of constraints on body’s shape
(volume, surface, cross-section, etc.) and body’s motion. We developed the semi-analytical approach
coupling the framework of generalized analytic functions with adjoint equations-based method and
demonstrated this approach for the problem of finding optimal shape for the solid unit-volume body
translating in the fluid.

In [20], we introduced a special class of generalized analytic functions that arise from the funda-
mental relationship between a scalar field φ and vectorial field Λ:

gradφ = − curl Λ, div Λ = 0, (2)
1This solution form is used for representing the velocity field for prolate spheroid.
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which maintains that φ and Λ are related scalar and vectorial potentials, respectively. This relationship
is encountered in various areas of applied mathematics, in particular in hydrodynamics, the theory of
elasticity, electromagnetism, etc.; see [20]. With div u = 0, the first equation in (1) can be rewritten
as grad℘ = −µ curl (curl u), whence it follows that the vorticity ω = curl u and pressure ℘ are related
by grad℘ = −µ curl ω with div ω = 0 and thus, µω and ℘ are related potentials satisfying (2).

In 2-D case in Cartesian coordinates, (2) reduces to the classical Cauchy-Riemann system for
ordinary analytic functions, and in the 3-D axially symmetric case in cylindrical coordinates (r, ϕ, z)2,
(2) defines so-called r-analytic functions; see [20]. In the 3-D asymmetric case, (2) relates the kth

harmonics of φ and Λ, k ∈ Z+
0 , with respect to ϕ, and reduces to a series of systems of two linear

first-order partial differential equations(
∂

∂r
− k

r

)
U (k) =

∂

∂z
V (k+1),

∂

∂z
U (k) = −

(
∂

∂r
+
k + 1
r

)
V (k+1), (3)

which for each k ∈ Z+
0 defines a class of k-harmonically analytic functions G(k)(r, z) = U (k)(r, z) +

iV (k+1)(r, z), where i =
√
−1; see [20].

It follows from (3) that U (k) and V (k+1) are k-harmonic and (k+1)-harmonic functions, respectively,
i.e., they satisfy

∆kU
(k) = 0 and ∆k+1V

(k+1) = 0, (4)

where ∆k denotes the so-called k-harmonic operator:

∆k ≡
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
− k2

r2
. (5)

In [18, 19], we developed a unifying framework for k-harmonically analytic functions in application
to 3-D Stokes flow problems (the papers have been submitted for publication). In particular, we
obtained representations for the fluid velocity field in terms of k-harmonically analytic functions
in axially symmetric and asymmetric cases and also derived a generalized Cauchy integral formula
for k-harmonically analytic functions, which paved the way for reducing 3-D Stokes flow problems
to integral equations for k-harmonically analytic functions.3 We formulated the benchmark shape
optimization problem as an integral equation constrained optimization problem and solved it using
the adjoint equations-based method. As another illustration, we applied the developed approach to
shape optimization problem for the solid unit-volume body of revolution translating in the fluid in
the direction perpendicular to its axis of revolution. The novelty of the suggested approach is in its
accuracy and efficiency.

2 Problem Formulation and Optimality Conditions

Let a solid unit-volume body translate in a viscous incompressible fluid under the assumption of zero
(low) Reynolds number with constant velocity vz along the z-axis. In this case, the fluid velocity field
is governed by the Stokes equations (1) and satisfies the no-slip boundary conditions on the surface S
of the body and conditions at infinity:

u|S = vz k, u|∞ = 0, ℘|∞ = 0. (6)

2In this case, the z-axis is the axis of symmetry, and φ and Λ are independent of the angular coordinate ϕ.
3Another possible approach to solve boundary-value problems for generalized analytic functions is to use formal

powers in the sense of Bers [2].
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Let D− be the domain exterior to the body D+ (S = ∂D+). The benchmark shape optimiza-
tion problem is to minimize the energy dissipation rate in the domain D− subject to the boundary
conditions (6) (PDE constrained optimization):

min
∂D−

˚
D−

(curl u)2 dV

s.t. Stokes equations (1),
boundary conditions (6),

unit volume:
˚
D+

dV = 1.

(7)

Since the body translates with the constant velocity vzk, we can represent the energy dissipation
rate via the resisting force (drag) F in the direction of the z-axis

˚
D−

(curl u)2 dV = −vzk · F = −vz Fz.

It follows from the symmetry of Fz, Stokes equations (1) and boundary conditions (6) that the
z-axis is body’s axis of revolution and thus, the fluid velocity field is axially symmetric, see Figure 1.

z  
kzv  

ϕ

r  

x  

 
Figure 1: Translation of the solid unit-volume body in the fluid with the velocity vz along the z-axis.

Let (r, ϕ, z) be the cylindrical system of coordinates with the basis (er, eϕ,k) and let `+ be the
boundary of the body D+ in the rz-cross-sectional plane for r ≥ 0. The components ur and uz
of the axially symmetric velocity field u are independent of the angular coordinate ϕ and uϕ ≡ 0.
Consequently, u(r, ϕ, z) = ur(r, z) er + uz(r, z) k. We also introduce the complex variable ζ = r + i z.
In [18], we represented the axially symmetric velocity field u in terms of two 0-harmonically analytic
functions G1(ζ) and G2(ζ)4:

uz + i ur =
(
z − i

2 r
)
G1(ζ) +G2(ζ). (8)

Thus, the shape optimization problem is to find the boundary `+ such that minimizes the drag5

4In our context, the notation G(ζ) does not assume analyticity of G and simply denotes G(r, z).
5In [18], we expressed the drag in terms of the function G1.
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subject to the boundary conditions formulated in terms of the functions G1 and G2:

min
`+

Re
{
−
ˆ
`+

r G1(ζ) dζ
}

s.t. G1(ζ) and G2(ζ) are 0-harmonically analytic functions in D−,(
z − i

2 r
)
G1(ζ) +G2(ζ) = vz, ζ ∈ `+,

unit volume: 2π
¨
`+

r dr dz = 1.

(9)

There are two issues in dealing with (9): (i) satisfying the condition that G1(ζ) and G2(ζ) are
0-harmonically analytic functions in D−, and (ii) finding unknown shape `+.

The boundary values of G1(ζ) and G2(ζ) at `+ should satisfy the Sokhotsky-Plemelj’s formula,
which follows from the Cauchy integral formula for k-harmonically analytic functions derived in [18]:(

2− α(ζ)
π

)
Gj(ζ) +

1
πi

ˆ
`+

Gj(τ)
Ω(k)

+ (ζ, τ)
τ − ζ

dτ −Gj(τ)
Ω(k)
− (ζ, τ)
τ + ζ

dτ = 0, ζ ∈ `+, 1 ≤ j ≤ 2, (10)

where Ω(k)
+ (ζ, τ) and Ω(k)

− (ζ, τ) are real-valued functions (see [18]) and α(ζ) is the angle between the
right and left tangent vectors to the curve `+ at the point ζ. For all points in which `+ is smooth,
α(ζ) = π.

In our work [18], we reduced the boundary-value problem
(
z − i

2 r
)
G1(ζ) +G2(ζ) = vz on `+ for

two 0-harmonically analytic functions G1(ζ) and G2(ζ) in the domain D− to a single integral equation:

L (G1) =
ˆ
`+

(
G1(τ)K1(ζ, τ) dτ −G1(τ)K2(ζ, τ) dτ

)
= 2vz, ζ ∈ `+, (11)

where ζ = r + i z, τ = r1 + i z1 and

K1(ζ, τ) = 1
πi C1(ζ, τ) Ω(0)

+ (ζ, τ), K2(ζ, τ) = 1
πi C2(ζ, τ) Ω(0)

− (ζ, τ) (12)

with

C1(ζ, τ) =
z1 − i

2 r1 − (z − i
2 r)

τ − ζ
, C2(ζ, τ) =

z1 + i
2 r1 − (z − i

2 r)
ζ + τ

.

Thus, the problem (9) reduces to

min
`+

Re
{
−
ˆ
`+

r G1(ζ) dζ
}

s.t. L (G1) = 2vz, ζ ∈ `+,

2π
¨
D+

r dr dz = 1.

(13)

Let the curve `+ be parameterized by s ∈ [0, 1], i.e., ζ(s) = r(s) + i z(s), and let G1 be determined
as a function of s, i.e., G1 = G1(s). Then the problem (13) is reformulated as an optimal control
problem:

min
ζ(s)

Re
{
−
ˆ 1

0
r(s)G1(s) ζ̇(s) ds

}
s.t. Sζ(G1ζ̇) = 2vz, s ∈ [0, 1],

π

ˆ 1

0
r2(s) ż(s) ds = 1,

r(0) = 0, r(1) = 0,

(14)
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where the first constraint is the state equation and the operator Sζ is determined by

Sζ(G1ζ̇) =
ˆ 1

0

(
G1(t) ζ̇(t)K1(ζ(s), ζ(t))−G1(t) ζ̇(t)K2(ζ(s), ζ(t))

)
dt. (15)

We also assume that

lim
s→0

(r(s)G1(s)) = 0, lim
s→1

(r(s)G1(s)) = 0.

Let λ(s) be a complex-valued function and let η be a real-valued constant. Then, the Lagrangian
for (14) is determined by

L(ζ, ζ̇;G1;λ, η) = Re
{ˆ 1

0

(
(Aζ(λ)− r(s))G1(s)ζ̇(s)− 2vz λ(s) + η r2(s) ż(s)

)
ds− η

π

}
, (16)

where

Aζ(λ) =
ˆ 1

0

(
λ(t)K1(ζ(t), ζ(s))− λ(t)K2(ζ(t), ζ(s))

)
dt. (17)

In this case, the adjoint (or co-state) equation takes the form

Aζ(λ) = r(s), s ∈ [0, 1]. (18)

With (18), the total variation of the Lagrangian (16) reduces to

δL = Re

{ˆ 1

0

(
G1(s) ζ̇(s)

∂(Aζ(λ)− r(s))
∂r

+ λ(s)
∂Sζ(G1ζ̇)

∂r
+ 2η r(s) ż(s)

)
δr(s) ds

+
ˆ 1

0

(
G1(s) ζ̇(s)

∂(Aζ(λ)− r(s))
∂z

+ λ(s)
∂Sζ(G1ζ̇)

∂z
− 2η r(s) ṙ(s)

)
δz(s) ds

}
.

(19)

Optimality conditions are summarized below:

State eq.:

ˆ 1

0

(
G1(t) ζ̇(t)K1(ζ(s), ζ(t))−G1(t) ζ̇(t)K2(ζ(s), ζ(t))

)
dt︸ ︷︷ ︸

Sζ(G1ζ̇)

= 2vz, (20a)

Adjoint eq.:

ˆ 1

0

(
λ(t)K1(ζ(t), ζ(s))− λ(t)K2(ζ(t), ζ(s))

)
dt︸ ︷︷ ︸

Aζ(λ)

= r(s), (20b)

Design eq.’s: Re

{
G1(s) ζ̇(s)

∂(Aζ(λ)− r(s))
∂r

+ λ(s)
∂Sζ(G1ζ̇)

∂r
+ 2η r(s) ż(s)

}
= 0, (20c)

Re

{
G1(s) ζ̇(s)

∂(Aζ(λ)− r(s))
∂z

+ λ(s)
∂Sζ(G1ζ̇)

∂z
− 2η r(s) ṙ(s)

}
= 0, (20d)

π

ˆ 1

0
r2(s) ż(s) ds = 1, (20e)

Boundary cond.’s: r(0) = 0, r(1) = 0. (20f)
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Observe that equations (20a)–(20d) are dependent:

ṙ(s)

(
G1(s) ζ̇(s)

∂(Aζ(λ)− r(s))
∂r

+ λ(s)
∂Sζ(G1ζ̇)

∂r
+ 2η r(s) ż(s)

)

+ ż(s)

(
G1(s) ζ̇(s)

∂(Aζ(λ)− r(s))
∂z

+ λ(s)
∂Sζ(G1ζ̇)

∂z
− 2η r(s) ṙ(s)

)

= G1(s) ζ̇(s)
d(Aζ(λ)− r(s))

ds
+ λ(s)

dSζ(G1ζ̇)
ds

= 0,

whence it follows that

G1(s) ζ̇(s)
∂(Aζ(λ)− r(s))

∂z
+ λ(s)

∂Sζ(G1ζ̇)
∂z

− 2η r(s) ṙ(s)

= − ṙ(s)
ż(s)

(
G1(s) ζ̇(s)

∂(Aζ(λ)− r(s))
∂r

+ λ(s)
∂Sζ(G1ζ̇)

∂r
+ 2η r(s) ż(s)

)
.

Solving the system (20a)–(20f) analytically is still an open issue. However, the optimization prob-
lem (14) can be efficiently solved by the adjoint equations-based method, which is the subject of the
next section.

3 Adjoint Equations-based Method

The problem (14) can be rewritten in the following form

min
ζ(s)

Re
{
−〈G1 ζ̇, r〉

}
s.t. Sζ(G1ζ̇) = 2vz, s ∈ [0, 1],

ζ(s) ∈ X ,

(21)

where the inner product 〈·, ·〉 is in L2([0, 1]), i.e., is defined by

〈f, g〉 =
ˆ 1

0
f(t) g(t) dt, ‖f‖ =

√
〈f, f〉

and

X =
{

(r(s), z(s))
∣∣∣∣ π ˆ 1

0
r2(s) ż(s) ds = 1, r(0) = 0, r(1) = 0

}
. (22)

Then the Lagrangian for (21) is given by

L(ζ, ζ̇G1, λ) = Re
{
−〈G1 ζ̇, r〉+ 〈Sζ(G1ζ̇)− 2vz, λ〉

}
= Re

{
〈G1 ζ̇,S∗ζ (λ)− r〉 − 〈2vz, λ〉

}
,

(23)

where ζ(s) ∈ X and S∗ζ is the operator adjoint to Sζ and is determined by S∗ζ (λ) = Aζ(λ) (see
Appendix A for derivation of the adjoint operator).

The total variation of the Lagrangian takes the form

δL(ζ, ζ̇G1, λ) = Re{〈G1 ζ̇, δζ(S∗ζ (λ)− r)〉+ 〈δ(G1 ζ̇),S∗ζ (λ)− r〉
+ 〈Sζ(G1ζ̇)− 2vz, δλ〉}, ζ(s) ∈ X ,
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which by the adjoint equations-based method reduces to the variation only with respect to ζ:

δL(ζ, ζ̇G1, λ) = δζL = Re{〈δζSζ(G1 ζ̇), λ〉 − 〈G1 ζ̇, δr〉}

s.t. state eq.: Sζ(G1ζ̇) = 2vz,
adjoint eq.: S∗ζ (λ) = r,

ζ(s) ∈ X ,

where

δζSζ(f) =
ˆ 1

0

(
f(t) δK1(ζ(s), ζ(t))− f(t) δK2(ζ(s), ζ(t))

)
dt

and
δKj(ζ, τ) =

∂Kj(ζ, τ)
∂r

δr +
∂Kj(ζ, τ)

∂r1
δr1 +

∂Kj(ζ, τ)
∂z

δz +
∂Kj(ζ, τ)

∂z1
δz1, j = 1, 2.

The corresponding derivatives of K1 and K2 are presented in Appendix B.
The variation of the Lagrangian is used to find the direction δζ in which the drag value has the

steepest descent. Let
F (δζ) = Re{〈δζSζ(G1 ζ̇), λ〉 − 〈G1 ζ̇, δr〉},

which is a linear operator with respect to δζ, and let

ζ(s) = γ ζ̂(s) = γ
∑n

j=1
aj ζ̂j(s) ∈ X , (24)

where ζ̂j(s) are basis functions and γ = γ(a1, . . . , an) is the multiplier chosen to satisfy the unit-volume
constraint. Then we can write

δζ =
∑n

j=1
(ajδγ + γδaj) ζ̂j(s) =

∑n

j=1
bj ζ̂j(s),

where bj = aj
∑n

i=1
∂γ
∂ai

δai + γ δaj , or in vectorial notation, if a = (a1, . . . , an)>, d = (δa1, . . . , δan)>

and b = (b1, . . . , bn)>, then b = (∇γ · d) a + γ d. In terms of (24), the unit-volume constraint takes
the form πγ3

´ 1
0 r̂

2(s) ˙̂z(s) ds = 1 and thus, the gradient of γ with respect to a is determined by

∂γ

∂aj
= −

´ 1
0

(
2 r̂j(s) r̂(s) ˙̂z(s) + r̂2(s) ˙̂zj(s)

)
ds

3π1/3
(´ 1

0 r̂
2(s) ˙̂z(s) ds

)4/3
. (25)

From (25), we have (∇γ · a) = −γ, whence (∇γ · b) = (∇γ · d)(∇γ · a) + γ(∇γ · d) = 0.
To find the direction d∗ of the steepest descent, we formulate the following problem

min
‖δζ‖=1

F (δζ) = min
b

(f · b) subject to b>H b = 1, (∇γ · b) = 0, (26)

where the vector f has components fj = F (ζ̂j), H is the symmetric matrix with elements Hij = 〈ζ̂i, ζ̂j〉
and G1(s) and λ(s) are found from the state and adjoint equations, respectively (this will be discussed
in the end of the section). Solving (26), we obtain

b∗ =
(

f>H−1f − (∇γ>H−1f)2

∇γ>H−1∇γ

)−1( ∇γ>H−1f
∇γ>H−1∇γ

H−1∇γ −H−1f
)
,

and consequently, we can express d via b as

d∗ =
1
γ

(b∗ − (∇γ · d∗) a) . (27)

9



Since the scalar product of (27) with ∇γ reduces to identity, d∗ can be chosen so that (∇γ · d∗) = 0.
Then the new vector anew is determined by

anew = a + hd∗,

where the step size h is found by the golden section technique.
Finally, representing the functions G1(s) and λ(s) on [0, 1] in the form

G1(s) =
∑m

k=1
(p1k ĝ1k(s) + i p2k ĝ2k(s)),

λ(s) =
∑m

k=1
(q1k λ̂1k(s) + i q2k λ̂2k(s)),

(28)

where ĝ1k(s), ĝ2k(s), λ̂1k(s) and λ̂2k(s) are basis functions, satisfying the boundary conditions r(0) = 0
and r(1) = 0 and the symmetry conditions G1(1−s) = −G1(s) and λ(1−s) = −λ(s), we find unknown
coefficients p1k, p2k, q1k and q2k by minimizing the total squared error

min
p1k, p2k

‖Sζ(G1ζ̇)− 2vz‖2, min
q1k, q2k

‖S∗ζ (λ)− r‖2, (29)

where ‖ · ‖ is the norm in L2([0, 1]).
Let the coefficients p11,. . ., p1m, p21, . . ., p2m form single vector p and let a matrix J consist of

four blocks, each of which having the components

JIjk = Re{〈Sζ(ζ̇ ĝ1j(s)),Sζ(ζ̇ ĝ1k(s))〉}, JIIjk = Re{〈Sζ(ζ̇ ĝ1j(s)),Sζ(i ζ̇ ĝ2k(s))〉},
JIIIjk = JIIkj , JIVjk = Re{〈Sζ(i ζ̇ ĝ2j(s)),Sζ(i ζ̇ ĝ2k(s))〉}.

Also let components

wk = 2vz Re{〈1,Sζ(ζ̇ ĝ1k(s))〉}, wm+k = 2vz Re{〈1,Sζ(i ζ̇ ĝ2k(s))〉}, 1 ≤ k ≤ m,

form vector w, then the first problem in (29) reduces to a simple quadratic optimization problem

min
p

p>Jp− 2w>p, (30)

whose solution is given by p = J−1 w. The second minimization problem in (29) is solved similarly.
We summarize the adjoint equations-based method for finding the optimal shape.

Algorithm 1

1. Parametrize ζ(s) = γ(a1, . . . , an)
∑n

j=1 aj ζ̂j(s) ∈ X and set initial a = (a1, . . . , an),

2. Solve the state and adjoint equations for a given shape ζ by minimizing the total squared error
(problem (29)),

3. Calculate the optimal direction d∗ by (27),

4. Find the optimal step h in the direction d∗ and update a,

5. If ‖hd∗‖ < ε then Stop, otherwise Go To Step 2.

The next section implements the algorithm and presents computational results.
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4 Computational Results

Let body’s shape be represented in the form

ζ(s) = iγ
∑n

k=1
ak e

−πi s T2k−2(2s− 1), s ∈ [0, 1], (31)

where Tk(t) are Chebyshev’s polynomials of the first kind and the multiplier γ = γ(a1, . . . , an) is found
from the constraint πγ3

´ 1
0 r̂

2(s) ˙̂z(s) ds = 1 (unit volume). Obviously, r(0) = 0 and r(1) = 0.
Solutions to the state and adjoint equations are found from (28) with

ĝ1k(s) = T2k−1(2s− 1), ĝ2k(s) = T2k−2(2s− 1), 1 ≤ k ≤ m,

λ̂1k(s) = T2k−1(2s− 1), λ̂2k(s) = T2k−2(2s− 1), 1 ≤ k ≤ m.
(32)

We solved the shape optimization problem for m = 12 starting from the unit-volume sphere. For
the first iteration, we used n = 2 in the basis {ζ̂k(t)}nk=1 and then after each 3 iterations, we increased
n by 1. This adaptive basis procedure proved to be very efficient. We obtained the drag value of
0.95426 after 8 iterations (this value is normalized to the drag of the unit-volume sphere).6 Figure
2 plots the objective function against iteration number. For example, after 13 iterations (n = 6), we
obtained the drag of 0.954258 and the following shape:

γ = 0.5988558320119997,
a1 = 1.294644111408456, a2 = 0.4790126176431742, a3 = 0.02076294285722642,
a4 = −0.008671329483245576, a5 = −0.002115187983386224, a5 = −0.00024273396227855588.

Figure 3 shows the optimal shape for the solid unit-volume body translating in the fluid with constant
velocity and minimal drag. The shape is (almost) identical to the one obtained by Bourot [3] and is
a significant improvement compared to the result of Ogawa and Kawahara [11].

As expected, the performance of the algorithm, which is gradient-based, depends on the initial
choice of the shape and on the method for finding optimal step size for a given direction. As an im-
provement for the algorithm, we can employ a conjugate gradient method, which uses the information
about several consecutive gradients.

0 2 4 6 8
0.95

0.96

0.97

0.98

0.99

1.00

Figure 2: Value of the objective function, normalized to the drag of the unit-volume sphere, for each
iteration. The drag value of 0.95426 was obtained after 8 iterations (m = 12 and n = 5) by adaptive
basis procedure.

6Bourot’s value is 0.95425; see [3].
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Figure 3: Optimal shape for the solid unit-volume body translating in the fluid with constant velocity
and the drag of 0.95426 (m = 12, n = 5, 8 iterations).

5 Optimal Shape for Transversal Translation

In this section, we solve the problem of finding optimal shape for a solid unit-volume body of revolution
translating in a viscous incompressible fluid in the direction transversal to the axis of revolution. To
the best of our knowledge, this problem has not been addressed. As in the previous case, we minimize
the energy dissipation rate subject to the condition that the fluid velocity field is governed by the
Stokes equations (1). Here, we assume that the z-axis is body’s axis of revolution and that the body
translates along the y-axis with the constant velocity vy j; see Figure 4. In this case, the boundary
conditions for the velocity field are given by

u|S = vy j, u|∞ = 0, ℘|∞ = 0. (33)

ϕ

z  

y

x  

kyv  

 
Figure 4: Transversal translation of the solid unit-volume body of revolution in the fluid.

The shape optimization problem is formulated similarly to the problem (7) (PDE constrained
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optimization):

min
∂D−

˚
D−

(curl u)2 dV

s.t. Stokes equations (1),
boundary conditions (33),

unit volume:
˚
D+

dV = 1,

z-axis is body’s axis of revolution,

where D+ and D− denote interior and exterior domains for the body, respectively.
As in the previous case, since the body translates with the constant velocity vy j, we can represent

the energy dissipation rate via the resisting force (drag) F in the direction of the y-axis
˚
D−

(curl u)2 dV = −vy j · F = −vy Fy.

In our work [19], we reduced the Stokes equations (1) for the boundary conditions (33) to two
integral equations using Sokhotsky-Plemelj’s formula (10) for k-harmonically analytic functions. Con-
sequently, the shape optimization problem reduces to minimizing the drag subject to two integral
equation constraints:

min
ζ(s)

Re
{
−〈G(0)

1 ζ̇, r〉
}

s.t. G
(0)
1 (s) = H1(s) + iH2(s)

G2(s) = 1
2 r H2(s) + iH3(s),

Tζ(G
(0)
1 ζ̇) + Pζ(G2ζ̇) = −4vy, s ∈ [0, 1],

Re{β(s)G2(s) +Rζ(G2ζ̇)} = 0, s ∈ [0, 1],
ζ(s) ∈ X ,

(34)

where ζ = r+i z and τ = r1+i z1 are complex variables in the rz-cross-sectional plane in the cylindrical
coordinates (r, ϕ, z), in which the z-axis coincides with the z-axis in the Cartesian coordinates (x, y, z);
H1(s), H2(s) and H3(s) are unknown real-valued functions7 parametrized by s on [0, 1]; β(s) =
2− α(ζ(s))

π
with α(ζ) same as in (10); and

Tζ(G
(0)
1 ζ̇) =

ˆ 1

0

(
G

(0)
1 (t) ζ̇(t)M1(ζ(s), ζ(t))−G(0)

1 (t) ζ̇(t)M2(ζ(s), ζ(t))
)
dt,

Pζ(G2ζ̇) =
ˆ 1

0

(
G2(t) ζ̇(t)M3(ζ(s), ζ(t))−G2(t) ζ̇(t)M4(ζ(s), ζ(t))

)
dt,

M1(ζ, τ) =
1
πi
C11(ζ, τ)Ω(0)

+ (ζ, τ), M2(ζ, τ) =
1
πi
C21(ζ, τ)Ω(0)

− (ζ, τ),

C11(ζ, τ) =
z − z1 − 2i(r − r1)

τ − ζ
, C21(ζ, τ) =

z − z1 − 2i(r + r1)
τ + ζ

,

M3(ζ, τ) =
1
πi

Ω(0)
+ (ζ, τ)− Ω(1)

+ (ζ, τ)
τ − ζ

, M4(ζ, τ) =
1
πi

Ω(0)
− (ζ, τ) + Ω(1)

− (ζ, τ)
τ + ζ

,

7In [19], the functions H1(s), H2(s) and H3(s) correspond to U
(0)
1 (s), V

(1)
1 (s) and U

(0)
3 (s), respectively.
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Rζ(G2ζ̇) =
1
πi

ˆ 1

0

(
G2(t) ζ̇(t)

Ω(1)
+ (ζ(s), ζ(t))
ζ(t)− ζ(s)

+G2(t) ζ̇(t)
Ω(1)
− (ζ(s), ζ(t))

ζ(t) + ζ(s)

)
dt,

and the set X is defined by (22).
We solved the problem (34) using the adjoint equations-based method discussed in Section 3.
Let λ1(s) ∈ C and λ2(s) ∈ R, then the Lagrangian for (34) takes the form

L(ζ,H1, H2, H3, λ1, λ2) = Re
{
−〈G(0)

1 ζ̇, r〉+ 〈Tζ(G
(0)
1 ζ̇) + Pζ(G2ζ̇)− 4vy, λ1〉+ 〈β G2 +Rζ(G2ζ̇), λ2〉

}
= Re

{
〈H1, ζ̇(T ∗ζ (λ1)− r)〉+ 〈H3,−iζ̇(P∗ζ (λ1) +R∗ζ(λ2))− iβ λ2〉 − 4vy〈λ1, 1〉

+〈H2,−iζ̇(T ∗ζ (λ1)− r) + r
2 ζ̇(P∗ζ (λ1) +R∗ζ(λ2)) + r

2 β λ2〉
}
,

whence it follows that the adjoint equations are

Re
{
ζ̇(T ∗ζ (λ1)− r)

}
= 0,

Re
{
−iζ̇(T ∗ζ (λ1)− r) + r

2 ζ̇(P∗ζ (λ1) +R∗ζ(λ2)) + r
2 β λ2

}
= 0,

Re
{
−iζ̇(P∗ζ (λ1) +R∗ζ(λ2))− iβ λ2

}
= 0,

or equivalently,

Re
{
ζ̇(T ∗ζ (λ1)− r)

}
= 0, ζ̇

(
T ∗ζ (λ1)− r − i

2 r(P
∗
ζ (λ1) +R∗ζ(λ2))

)
− i

2 rβ λ2 = 0, (35)

where T ∗ζ , P∗ζ and R∗ζ are adjoint operators determined by (see Appendix A)

T ∗ζ (λ1) =
ˆ 1

0

(
λ1(t)M1(ζ(t), ζ(s))− λ1(t)M2(ζ(s), ζ(t))

)
dt,

P∗ζ (λ1) =
ˆ 1

0

(
λ1(t)M3(ζ(s), ζ(t))− λ1(t)M4(ζ(s), ζ(t))

)
dt,

R∗ζ(λ2) = − 1
πi

ˆ 1

0

(
λ2(t)

Ω(1)
+ (ζ(t), ζ(s))
ζ(t)− ζ(s)

+ λ2(t)
Ω(1)
− (ζ(t), ζ(s))

ζ(t) + ζ(s)

)
dt.

Using the adjoint equations-based method, we can write the total variation of the Lagrangian only
with respect to ζ and ζ̇:

δζ,ζ̇L = Re
{
−〈G(0)

1 δζ̇, r〉 − 〈G(0)
1 ζ̇, δr〉+ 〈Tζ(G

(0)
1 δζ̇) + Pζ(G2δζ̇), λ1〉+ 〈Rζ(G2δζ̇), λ2〉

+ 〈δζTζ(G
(0)
1 ζ̇) + δζPζ(G2ζ̇), λ1〉+ 〈 β

2
H2 δr + δζRζ(G2ζ̇), λ2〉

}
subject to the constraints in (34) and adjoint equations (35). Here we have

δζTζ(G
(0)
1 ζ̇) =

ˆ 1

0

(
G

(0)
1 (t)ζ̇(t) δM1(ζ(s), ζ(t))−G(0)

1 (t)ζ̇(t) δM2(ζ(s), ζ(t))
)
dt,

δζPζ(G2ζ̇) =
ˆ 1

0

(
G2(t)ζ̇(t) δM3(ζ(s), ζ(t))−G2(t)ζ̇(t) δM4(ζ(s), ζ(t))

)
dt+ Pζ( 1

2 H2 ζ̇ δr),
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δζRζ(G2ζ̇) =
1
πi

ˆ 1

0

(
G2(t)ζ̇(t) δ

(
Ω(1)

+ (ζ(s), ζ(t))
ζ(t)− ζ(s)

)
+G2(t)ζ̇(t) δ

(
Ω(1)
− (ζ(s), ζ(t))

ζ(t) + ζ(s)

))
dt

+Rζ( 1
2 H2 ζ̇ δr),

where

δMj(ζ, τ) =
∂Mj(ζ, τ)

∂r
δr +

∂Mj(ζ, τ)
∂r1

δr1 +
∂Mj(ζ, τ)

∂z
δz +

∂Mj(ζ, τ)
∂z1

δz1, j = 1, 2.

The corresponding derivatives of Mj are presented in Appendix C.
We represented ζ(s) in the form similar to (31)

ζ(s) = iγ
∑n

k=1
ak e

−πi s T2k−2(2s), s ∈ [0, 1
2 ],

ζ(s) = ζ(1− s), s ∈ [ 1
2 , 1],

(36)

which in contrast to (31) allows for non-smoothness at s = 1
2 , and calculated the gradient as in Section

3. Since the state and adjoint variables satisfy the following symmetry conditions

H1(1− s) = −H1(s), H2(1− s) = H2(s), H3(1− s) = −H3(s),
λ1(1− s) = λ1(s), λ2(1− s) = λ2(s),

we represented them on [0, 1
2 ] in the form of series with Chebyshev’s polynomials of the first kind

(similar to (28) with (32)) and found unknown coefficients by minimizing the total squared error (see
the problem (29)).

In our preliminary numerical experiments, we obtained the optimal drag of 0.9877, normalized to
the drag of the unit-volume sphere, for m = 9 and n = 4 and expect that this result can be improved.
The shape that corresponds to this value is determined by

γ = 0.6192260666309106,
a1 = 0.9994918803923275, a2 = 0.18824077143133067,
a3 = −0.01408994670305956, a4 = 0.0066332158943282656,

and is shown in Figure 5.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.4

-0.2

0.0

0.2

0.4

Figure 5: Preliminary results: optimal shape for the solid unit-volume body of revolution translating
in the fluid with constant velocity in the horizontal direction (vertical axis is the axis of revolution,
and m = 9 and n = 4).

15



6 Conclusions

We have suggested the semi-analytical approach to three-dimensional (3-D) shape optimization prob-
lems. The approach couples the framework of the generalized analytic functions with adjoint equations-
based method and is summarized below.

(i) Identify the class of generalized analytic functions related to the governing equations (e.g., Stokes
equations, Oseen equations, Maxwell’s equations, etc.),

(ii) Represent solution to the governing equations in terms of the generalized analytic functions,

(iii) Use the Cauchy integral formula for the generalized analytic functions to reduce boundary-value
problems for governing equations to corresponding integral equations (state equations),

(iv) Formulate shape optimization problem with integral equation constraints and apply adjoint
equations-based method for obtaining the gradient of the Lagrangian,

(v) Solve the state and adjoint equations by minimizing the total squared error.

We have illustrated this approach in solving drag minimization problem for a solid unit-volume
body translating in a viscous incompressible fluid with constant velocity under the assumption of zero
(low) Reynolds number. We have also solved this problem under the constraint that the body has the
axis of revolution and translates in the direction perpendicular to the axis. The novelty and advantage
of the approach is in its efficiency and accuracy, which can be attributed to

Solution on the boundary versus solution in the domain (PDE constrained optimization),

Analytical representations for the state and adjoint functions and for body’s shape,

Analytical form of the gradient.

Among open issues are those inherited from the gradient-based method, namely
Finding global optimum vs. local optimum, and

Finding initial shape efficiently.

Addressing these issues as well as applying the developed approach to other physical models, e.g., to
Maxwell’s equations governing the behavior of electromagnetic waves, are the subject for the future
research.

A Derivation of the Adjoint Operator

Let Sζ(f) =
´ 1
0

(
f(t)K1(ζ(s), ζ(t))− f(t)K2(ζ(s), ζ(t))

)
dt then

Re{〈Sζ(f), λ〉} = Re
{ˆ 1

0
λ(s)
ˆ 1

0

(
f(t)K1(ζ(s), ζ(t))− f(t)K2(ζ(s), ζ(t))

)
dt ds

}
= Re

{ˆ 1

0
f(s)

ˆ 1

0
λ(t)K1(ζ(t), ζ(s)) dt ds−

ˆ 1

0
f(s)

ˆ 1

0
λ(t)K2(ζ(t), ζ(s)) dt ds

}
= Re

{ˆ 1

0
f(s)

ˆ 1

0

(
λ(t)K1(ζ(t), ζ(s))− λ(t)K2(ζ(t), ζ(s))

)
dt ds

}
= Re{〈f,S∗ζ (λ)〉},

and consequently, S∗ζ (λ) =
´ 1
0

(
λ(t)K1(ζ(t), ζ(s))− λ(t)K2(ζ(t), ζ(s))

)
dt.
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B Derivatives of K1(ζ, τ) and K2(ζ, τ)

This section presents the derivatives of the kernels K1(ζ, τ) and K2(ζ, τ) entering the gradient expres-
sion.

∂K1(ζ, τ)
∂r

=
1
πi

([
z1 − z

2(τ − ζ)2
− C1(ζ, τ)

2r

]
Ω(0)

+ (ζ, τ) +
r21 − r2 + (z − z1)2

2r |ζ + τ |2
C1(ζ, τ) Ω(0)

− (ζ, τ)
)
,

∂K1(ζ, τ)
∂r1

=
1
πi

([
z − z1

2(τ − ζ)2
+
C1(ζ, τ)

2r1

]
Ω(0)

+ (ζ, τ) +
r2 − r21 + (z − z1)2

2r1 |ζ + τ |2
C1(ζ, τ) Ω(0)

− (ζ, τ)
)
,

∂K2(ζ, τ)
∂r

=
1
πi

([
z − z1

2 (ζ + τ)2
− C2(ζ, τ)

2r

]
Ω(0)
− (ζ, τ) +

r21 − r2 + (z − z1)2

2r |ζ − τ |2
C2(ζ, τ) Ω(0)

+ (ζ, τ)
)
,

∂K2(ζ, τ)
∂r1

=
1
πi

([
z − z1

2 (ζ + τ)2
+
C2(ζ, τ)

2r1

]
Ω(0)
− (ζ, τ) +

r2 − r21 + (z − z1)2

2r1 |ζ − τ |2
C2(ζ, τ) Ω(0)

+ (ζ, τ)
)
,

∂K1(ζ, τ)
∂z

=
1
πi

(
r − r1

2(τ − ζ)2
Ω(0)

+ (ζ, τ)− z − z1
|ζ + τ |2

C1(ζ, τ) Ω(0)
− (ζ, τ)

)
,

∂K2(ζ, τ)
∂z

= − 1
πi

(
r + r1

2(ζ + τ)2
Ω(0)
− (ζ, τ) +

z − z1
|ζ − τ |2

C2(ζ, τ) Ω(0)
+ (ζ, τ)

)
,

∂K1(ζ, τ)
∂z1

= −∂K1(ζ, τ)
∂z

,
∂K2(ζ, τ)

∂z1
= −∂K2(ζ, τ)

∂z
.

C Derivatives of the Kernels for Transversal Motion

This section presents the derivatives of the kernels M1(ζ, τ), M2(ζ, τ), M3(ζ, τ) and M4(ζ, τ) entering
the gradient expression for transversal translation of the body of revolution.

∂M1(ζ, τ)
∂r

=
1
πi

(
z1 − z

(τ − ζ)2
− 1

2r
C11(ζ, τ)

)
Ω(0)

+ (ζ, τ) +
1
πi

r21 − r2 + (z − z1)2

2r |ζ + τ |2
C11(ζ, τ)Ω(0)

− (ζ, τ),

∂M1(ζ, τ)
∂r1

=
1
πi

(
z − z1

(τ − ζ)2
+

1
2r1

C11(ζ, τ)
)

Ω(0)
+ (ζ, τ) +

1
πi

r2 − r21 + (z − z1)2

2r1 |ζ + τ |2
C11(ζ, τ)Ω(0)

− (ζ, τ),

∂M1(ζ, τ)
∂z

=
1
πi

r − r1
(τ − ζ)2

Ω(0)
+ (ζ, τ)− 1

πi
C11(ζ, τ)

z − z1
|ζ + τ |2

Ω(0)
− (ζ, τ),

∂M1(ζ, τ)
∂z1

= −∂M1(ζ, τ)
∂z

,

∂M2(ζ, τ)
∂r

=
1
πi

(
z − z1

(τ + ζ)2
− 1

2r
C21(ζ, τ)

)
Ω(0)
− (ζ, τ) +

1
πi

r21 − r2 + (z − z1)2

2r |ζ − τ |2
C21(ζ, τ)Ω(0)

+ (ζ, τ),

∂M2(ζ, τ)
∂r1

=
1
πi

(
z − z1

(τ + ζ)2
+

1
2r1

C21(ζ, τ)
)

Ω(0)
− (ζ, τ) +

1
πi

r2 − r21 + (z − z1)2

2r1 |ζ − τ |2
C21(ζ, τ)Ω(0)

+ (ζ, τ),

∂M2(ζ, τ)
∂z

= − 1
πi

r + r1
(τ + ζ)2

Ω(0)
− (ζ, τ)− 1

πi
C21(ζ, τ)

z − z1
|ζ − τ |2

Ω(0)
+ (ζ, τ),
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∂M2(ζ, τ)
∂z1

= −∂M2(ζ, τ)
∂z

,

∂M3(ζ, τ)
∂r

=
1
πi

(
r21 − r2 + (z − z1)2

τ − ζ
Ω(0)
− (ζ, τ)− 3Ω(1)

− (ζ, τ)

2r |ζ + τ |2
− τ − ζ − 2r

2r(τ − ζ)2
(

Ω(0)
+ (ζ, τ)− Ω(1)

+ (ζ, τ)
))

,

∂M3(ζ, τ)
∂r1

=
1
πi

(
r2 − r21 + (z − z1)2

τ − ζ
Ω(0)
− (ζ, τ)− 3Ω(1)

− (ζ, τ)

2r1 |ζ + τ |2
+
τ − ζ − 2r1
2r1(τ − ζ)2

(
Ω(0)

+ (ζ, τ)− Ω(1)
+ (ζ, τ)

))
,

∂M3(ζ, τ)
∂z

=
1
πi

z1 − z
τ − ζ

Ω(0)
− (ζ, τ)− 3Ω(1)

− (ζ, τ)

|ζ + τ |2
+

1
π

Ω(0)
+ (ζ, τ)− Ω(1)

+ (ζ, τ)
(τ − ζ)2

,

∂M3(ζ, τ)
∂z1

= −∂M3(ζ, τ)
∂z

,

∂M4(ζ, τ)
∂r

=
1
πi

(
r21 − r2 + (z − z1)2

|ζ − τ |2
Ω(0)

+ (ζ, τ) + 3Ω(1)
+ (ζ, τ)

2r(τ + ζ)
− τ + ζ + 2r

2r(τ + ζ)2
(

Ω(0)
− (ζ, τ) + Ω(1)

− (ζ, τ)
))

,

∂M4(ζ, τ)
∂r1

=
1
πi

(
r2 − r21 + (z − z1)2

|ζ − τ |2
Ω(0)

+ (ζ, τ) + 3Ω(1)
+ (ζ, τ)

2r1(τ + ζ)
+
τ + ζ − 2r1
2r1(τ + ζ)2

(
Ω(0)
− (ζ, τ) + Ω(1)

− (ζ, τ)
))

,

∂M4(ζ, τ)
∂z

=
1
πi

z1 − z
|ζ − τ |2

Ω(0)
+ (ζ, τ) + 3Ω(1)

+ (ζ, τ)
τ + ζ

− 1
π

Ω(0)
− (ζ, τ) + Ω(1)

− (ζ, τ)
(τ + ζ)2

,

∂M4(ζ, τ)
∂z1

= −∂M4(ζ, τ)
∂z

,

∂

∂r

(
Ω(1)

+ (ζ, τ)
τ − ζ

)
=

1
τ − ζ

(
3
r21 − r2 + (z − z1)2

2r|ζ + τ |2
Ω(1)
− (ζ, τ) +

2r − τ + ζ

2r(τ − ζ)
Ω(1)

+ (ζ, τ)
)
,

∂

∂r1

(
Ω(1)

+ (ζ, τ)
τ − ζ

)
=

1
τ − ζ

(
3
r2 − r21 + (z − z1)2

2r1|ζ + τ |2
Ω(1)
− (ζ, τ) +

τ − ζ − 2r1
2r1(τ − ζ)

Ω(1)
+ (ζ, τ)

)
,

∂

∂z

(
Ω(1)

+ (ζ, τ)
τ − ζ

)
=

1
τ − ζ

(
3
z1 − z
|ζ + τ |2

Ω(1)
− (ζ, τ) +

i Ω(1)
+ (ζ, τ)
τ − ζ

)
,

∂

∂z1

(
Ω(1)

+ (ζ, τ)
τ − ζ

)
= − ∂

∂z

(
Ω(1)

+ (ζ, τ)
τ − ζ

)
,

∂

∂r

(
Ω(1)
− (ζ, τ)
τ − ζ

)
=

1
τ + ζ

(
3
r21 − r2 + (z − z1)2

2r|ζ − τ |2
Ω(1)

+ (ζ, τ)− τ + ζ + 2r
2r(τ + ζ)

Ω(1)
− (ζ, τ)

)
,

∂

∂r1

(
Ω(1)
− (ζ, τ)
τ − ζ

)
=

1
τ + ζ

(
3
r2 − r21 + (z − z1)2

2r1|ζ − τ |2
Ω(1)

+ (ζ, τ) +
τ + ζ − 2r1
2r1(τ + ζ)

Ω(1)
− (ζ, τ)

)
,

∂

∂z

(
Ω(1)
− (ζ, τ)
τ − ζ

)
=

1
τ + ζ

(
3
z1 − z
|ζ − τ |2

Ω(1)
+ (ζ, τ)−

i Ω(1)
− (ζ, τ)
τ + ζ

)
,

∂

∂z1

(
Ω(1)
− (ζ, τ)
τ − ζ

)
= − ∂

∂z

(
Ω(1)
− (ζ, τ)
τ − ζ

)
.
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